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Long-wavelength peristaltic pumping at 
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An asymptotic expansion is found for the low Reynolds number flow induced in 
an axisymmetric tube by long peristaltic waves of arbitrary shape. Expressions 
are determined for the relationship between the mean pressure gradient and the 
volume flux, for the mean rate of working by the wall of the tube and for the shear 
stress a t  the wall. A necessary and sufficient condition for the occurrence of 
trapping (that is, regions of separated flow near the axis of the tube in a reference 
frame moving at  the wave speed) is obtained. It is shown that reflux (that is, 
a mean flux in the negative axial direction in a layer of fluid adjacent to the wall 
when the net mean flux is positive) occurs whenever there is an adverse mean 
pressure gradient, independently of the shape of the wave. A n  estimate of the 
amount of reflux is derived. 

I. Introduction 
The fluid mechanics of peristaltic pumping have been studied for some years 

and a review of much of the literature is presented by Jaffrin & Shapiro (1971). 
A major application of the work on this problem is to the understanding of the 
ureter (for example, Boyarsky et al. 1971). The Reynolds number of the flow in 
the ureter is not large and the ratio e of the tube radius to the wavelength of the 
peristaltic wave is invariably small. Hence the analysis commonly is carried out 
under the assumption of zero Reynolds number and with the neglect of axial 
velocity gradients in the momentum equation; that is, classical lubrication theory 
is used. Analyses until about 1970 were restricted to sinusoidally varying tubes. 
However, Lykoudis & Roos (1970) point out that the shape of the ureter during 
peristalsis is far from sinusoidal, and so they consider the flow through a tube of 
arbitrary wave shape. On the other hand, they are interested primarily in deter- 
mining the maximum pressure in a tube with a wall profile which varies algebrai- 
cally in the axial direction. 

In  the present work, the fluid mechanics of a peristaltic pump of arbitrary 
wave shape are studied in order to obtain some general properties of peristalsis. 
The analysis of Lykoudis & Roos is extended by accounting, to first order in e2, 
for the inertial and viscous effects which they neglect. (‘Inertial effects’ are due 
to the nonlinear advection terms in the equations of motion, while ‘viscous 
effects ’ are caused by those viscous diffusion terms previously neglected.) The 
asymptotic solution is obtained formally by the method used by Manton (1971) 
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in the study of flow through slowly varying tubes at  low Reynolds number. 
Owing to the unsteady nature of the present problem, the boundary conditions 
at the tube wall are different from those associated with steady flow through 
a tube of fixed shape. 

2. Formulation of problem 
We consider the motion of a viscous incompressible fluid in the domain 

- co < x* < co, 0 < r* < a(z* - ct) ,  0 < 8 < 2n, where t is time and (x*, r*, 8) are 
cylindrical polar co-ordinates such that r* = 0 is the axis of symmetry of the tube 
and the wall of the tube is r* = a. The wall profile is represented by an axisym- 
metric wave of constant shape propagating a t  speedc. For axisymmetric motion, 
the equations for the conservation of momentum and volume are 

ut + uuz* + vu,, +pX& = V(U~*~. + (r*u,.),*/r*), 
vt + uvs* + vv,. +pr,/p = v(vx,x. + (r*v,*),,/r* - v/r*2}, 

uxl + (r*v),+/r* = 0, 

where (u, v) are the fluid velocity components in the (x*, r * )  directions, respec- 
tively, p is the pressure, v is the constant fluid viscosity, p is the constant fluid 
density and the subscripts (x*, r* ,  t )  denote partial differentiation with respect 
to (x*, r*, t), respectively. 

(2.1) I 
The boundary conditions on the velocity components are taken to be 

v = da/dt on r* = a, (3.2a) 

v = 0 = u,, on r* = 0. (2 .2  c )  

u = O  on r* = a ,  ( 2 . 2  b )  

Condition (2 .2  a )  is simply the kinematic constraint that the radial motion of 
fluid particles a t  the wall corresponds to that of the wall. The no-slip condition 
(2.2 b )  implies that there is no axial movement of the wall, and so the wall material 
is necessarily extensible. Conditions (2 .2  c) ensure that the solution is regular at  
the axis. 

For a periodic wall profile, the axial length scale is represented by the wave- 
length A. (For a solitary wave, A is simply the axial extent of the disturbance.) 
Thus the function a is assumed to be of the form 

(2.3) 
where x = (x* - ct ) /A  and a, is the root-mean-square radius of the tube; that is 

a(x* - ct; a,, A )  = a,&), 

/0182(x)clx = 1. 

Following Manton (1971), we seek a quasi-steady solution of the system (2.1) with 
( 2 . 2 )  for the case when the radius of the tube varies slowly in time and in the axial 
direction. In  particular, we introduce a normalized vorticity component 
w(x,  r ;  e )  and stream function $(x,  r ;  e )  such that 

1 w = (a,/c) D with D = u,, - v,,, 

$,/r = u/c - 1, qhX/r = - vie, 
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where r = .*/ao and E = a,/A (0 < E < 1). Clearly, r is the normalized radial 
co-ordinate and x is a slowly varying normalized axial co-ordinate in a frame of 
reference moving at the wave speed. 

By putting (2.3) and (2.5) into (2.1) and (2.2)) the normalized equations of 
motion become 

( 2 . 6 ~ )  

(2.6 b )  
w = (#r / r )r  + ez#xz/r, 

Ree{#r(w/r)x - #x(w/r)rl = ((rw)r/r)r + e2wxm 

subject to the conditions 

where Re = a,c/v is a characteristic Reynolds number of the flow. We note that 
Re is an appropriate Reynolds number because the maximum volume flux 
through the peristaltic pump is nagc, as shown in 3 4 below. If nagca is the mean 
volume flux through the tube in a stationary reference frame then we find from 
(2.3)-(2.5) and (2 .7a)  that the stream-function parameter p is related to the 
normalized mean flux by 

a = 1-p.  (2.9) 

Condition (2.7a) and (2.9) suggest the mechanics of peristalsis. In  the frame 
moving with the wave, there is a flux of normalized magnitude p in the negative 
axial direction owing to the adverse (or zero) pressure gradient. However, by 
accounting for the Galilean transformation, there is a net positive flux in the 
stationary frame of reference. The energy for the transport process comes from 
the working of the tube wall against the radial force exerted by the fluid on the 
wall. 

We consider the solution of (2.6)-(2.8) when the Reynolds number is formally 
O(s) ;  in particular, we set 

where R = Ac/v is O(1). Thus the analysis is less general than that of Manton 
(1971)) where Re is of order unity. On the other hand, it does allow the first-order 
effects of both the inertial and viscous terms to be included conveniently in an 
expansion correct to 0(e2 ) .  Moreover, it is seen from (3.6b) that the expansion 
to O(e2) is valid for any Re that is o( 1). 

Re = RE, (2.10) 

3. Flow field 

asymptotic expansions of the form 
The flow field is described by the stream function and vorticity, and so we seek 

W W 

# = C ~ ~ ~ # ( ~ ' ( x , r ; R ) ,  w = e2ndn)(x , r ;R) .  (3.1) 
n=O n=O 

The sequences {#(")> and {d")} are determined by substituting (2.10) arid (3.1) 
into the system (2.6)-(2.8) and solving successively the sequence of equations 
obtained by equating the coefficients of like powers of e2. Because the method and 
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the physical interpretation of the terms included are discussed by Manton (1971),  
we state the result alone: 

$6 = - (p-s2)(r /s)4-(p--s2)(r /s)2 

- R e  e(s-l dsfdx) (p- is2) {&(p - s2) - Q(p - &s2) 
+&3-&2) (? - / s )4 - -3P-  $ 8 2 )  (r/s)2} 
--L 24' 2 6 {(P-s2)/s4}),,{(r/s)"2z(r/s)4+ (r/s)2} + 0 ( s 4 ) 9  

4 4 R e s d s  
s3 w = -(/3-.9)(r/s)--- s4 dx (P- *SZ) W - s 2 )  (+)5 

- (p- 4 8 2 )  (r/s)3 + &(p- *s2) ( r / s ) }  

- e 2 s 3 { ( p -  s 2 ) / s 4 } , x { g ( y / s ) 3  - f(+)} -E2ps (S-2 ) s z  (+) + o(E4). (3.3) 

It is seen that the inertial correction is proportional to the local slope of the wall, 
whilst the viscous correction involves the curvature and the square of the slope 
of the wall. 

4. Pressure distribution 
Lykoudis & Roos (1970) assert that any model of peristaltic pumping which is 

to be compared with the behaviour of the ureter ought to predict the instan- 
taneous pressure distribution along the tube. This is because the instantaneous 
pressure is measurable and has a distinct signature, and because the mean 
pressure gradient is generally zero in a healthy ureter (Kiil 1957, p. 59). To 
calculate the pressure, we let (4.1) = (8hpi,c/a;) q, 

W 

where q = c eZnP(9 ( x ,  r ;  R ) ,  
n=O 

put (2.5), (2.10), (3.2), (3.3) and (4.1) into (2.1), andequate the coefficients oflike 
powers of e2. This yields systems of equations for the set {I"")} which can be 
solved successively (Manton 1971). It is found finally that 

(4.2) 

The leading term in (4.2) implies that the maximum and minimum pressures 
occur at positions where $ 2  = 1 -a  + O(e2);  i.e. in the contracted region of the tube. 

We now introduce the normalized mean pressure gradient 

Y = d l , r ) - d O , ~ ) ,  (4.3) 
which equals the ratio of the pressure rise in the tube over a wavelength to the 
pressure drop over a length h in a tube of fixed radius a. with a mean fluid 
velocity c. Because s is periodic (4.2) and (4.3) give 
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(For a solitary wave, (4 .4 )  follows from the assumption that s(0) = s(1) and that 
the derivatives of s are negligible a t  x = 0 and x = I.) For a given wave shape, 
(4 .4 )  yields the linear relationship between the imposed pressure gradient and 
the resultant flow rate. Comparison of (4 .2 )  and (4 .4 )  shows that, although there 
is no first-order inertial correction to the mean pressure gradient, inertial effects 
do produce a first-order correction to the local pressure distribution in the tube. 
There is also a local radial pressure gradient of order e2 which does not affect the 
mean axial pressure gradient. For the algebraic wave shape used by Lykoudis & 
Roos (1970)  to model the ureter, these first-order effects produce corrections 
which are less than 1 % of the peak pressure in the tube. 

For a peristaltic pump we must have M: 2 0 and y 2 0;  hence (2 .4 ) ,  (2 .9 )  and 
(4 .4 )  imply that, correct to O(e2) a t  least, 

sLin < /3 6 I or 0 < a  < i-s& < 1, ( 4 . 5 a 7  b )  

where the subscript ‘min’ denotes the minimum value of a function. Thus the 
mean flux through a peristaltic pump is less than r a i c ,  and the upper limit on 
the flux is determined by the degree of contraction of the tube. Equation (4 .4 )  
can be used to obtain an upper bound on the mean flux in terms of the imposed 
pressure gradient, namely 

a < 1 - s%iny - S&in/Skax + O(€4), (4 .6 )  

where the subscript ‘max’ denotes the maximum value of a function. However, 
(4 .6 )  is more restrictive than (4 .5b )  only at large adverse pressure gradients. An 
upper limit on the adverse pressure gradient against which the pump can work 
is given from (4 .4 )  and ( 4 . 5 a )  by 

(4.7) 

The inequalities (4 .5) - (4 .7)  suggest that the general dilation of the tube wall or 
its inability to contract fully ought to decrease greatly its pumping efficacy. 

y < i/skin - l/Shax + 0 ( € 4 ) .  

5. Rate of working of wall of tube 
The energy required to pump fluid through the tube by peristalsis comes from 

the working of the tube wall against the radial force exert’ed by the fluid on the 
wall. Because there is assumed to be no axial velocity at the wall, the axial force 
exerted by the fluid on the wall does no work. By considering the motion in a 
frame moving a t  the wave speed, we find that the radial force per unit area 
acting on the fluid a t  the wall r* = a is 

where the stress tensor is given by 

crij = -pGij+2pveij  (5.2) 

and the rate-of-strain components are 

(5.3) 
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From (2 .5 ) ,  (3.6a), (2 .7 )  and (5.1)-(5.3) it can be shown that 

( 5 . 4 )  

The net rate of working of the wall over a wavelength is 

W, = j A  2naFvdz* .  (5 .5 )  
0 

Thus, introducing the normalized rate of working 

which is the ratio of 1% to the rate of energy dissipation by the fluid over a length A 
of a tube of constant radius a, with a mean flow velocity of c, we find from (2 .2a ) ,  
(2 .3 ) ,  (3.3), (4 .4 )  and (5.4)-(5.6) that 

6 = W , / ~ T ~ V C ' ~ ,  (5 .6)  

In  deriving (5 .7 )  we assume without loss of generality that s(0) = 1 = s(i). 
Equations (4 .4 )  and (5 .7 )  show that the net rate of working 6 of the wall is a 
linearly increasing function of the mean pressure gradient y and mean flux a. As 
€or y, the first-order inertial correction to the local rate of working of the wall does 
not contribute to the net rate of working over a full wavelength. 

The inequalities (4.6 a) may be used in (5 .7 )  to obtain upper and lower bounds 
on 6; in particular, correct to O(@) ,  

This suggests that the power supplied to the system is minimized for a given 
pressure gradient y by taking s,,, as close to unity as possible. On the other 
hand, conditions (2 .4 )  and (4 .5 )  imply that the mean flux approaches zero as a,,, 
approaches unity. 

y + 1 - 1/s& < 6 < y + 1 - (SmlJSm,,)', 

6. Shear stress at wall of tube 
The shear stress at the wall r* = a is 

It is found from (2 .5 ) ,  ( 2 . 6 a ) ,  (2 .7 ) ,  (5 .2 ) ,  (5 .3 )  and (6.1) that the shear stress is 
a linear function of the vorticity at the wall; in particular, 

The second term in ( 6 . 2 )  arises from the finite radial velocity at the wall; the shear 
stress at the wall of a fixed tube is given by the first term alone. Normalizing T 
with respect to the shear stress a t  the wall of a tube of constant radius a, with 
a mean flow velocity c, we set 

r = (a0 /4cpv )T .  (6 .3)  
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Hence it is seen from (3 .3 ) ,  (6 .2 )  and (6 .3 )  that the shear stress may be written as 

1 as 
(P-s2)++Ret$(P-~sz)-- s ax 

s3 

Condition ( 4 . 5 a )  and (6 .4 )  imply that the shear stress must change sign during 
peristalsis. Although there is no flow separation at the wall in the wave frame of 
reference, the axial velocity in the stationary frame does change sign at  points 
where s2 = P to zeroth order in e2. Unlike the flow through a fixed tube (Manton 
1971), this flow reversal is not associated with local separation a t  the wall: it 
occurs over the whole tube and is due to the oscillatory nature of the flow. On the 
other hand, local regions of separated flow can occur near the axis of the tube, 
and this is discussed in 3 7 below. 

The maximum shear stress T,,, occurs, to zeroth order in e2, at the point of 
maximum contraction. For a given wall shape, T~~~ decreases with increasing 
mean flow volume flux. Equation (6 .4 )  shows that as the Reynolds number 
increases the point of maximum shear stress moves onto the region .of positive 
wall slope where the radial velocity is negative. 

An upper bound on the shear stress is found from (4.5 a )  and (6 .4 )  to be given by 

and so is determined by the degree of contraction of the tube. On the other hand, 
the function T has a minimum when s2 = 3/3+0(e2).  Thus the minimum shear 
stress which occurs during dilation must satisfy, to O(l) ,  

This lower bound on the magnitude of T , , ~  occurs because the radial velocity 
gradients decrease with increasing dilation. 

Lykoudis & Roos (1970) show that the pressure distribution in the ureter 
is modelled well by the wave shape 

B+Axn for 0 < x < X, 

B + A X n  for X < x <  1,  
s(x) = 

where typical values are A = 6.9, B = 0.014, X = 0.69 and n = 4, corresponding 
to a wavelength h of 36 cm and a root-mean-square tube radius a, of 0.15 cm. The 
behaviour of the wall shear stress for this profile is shown in figure 1, where the 
mean pressure gradient is taken to be zero (i.e. y = 0). Taking c = 3cms-l, 
p = 1 g ~ m - ~  and v = 0-007 em2 s-l, we find that the maximum stress of 10.4 
dyne cm-2 occurs at the maximum contraction while the minimum stress of 
- 14.5 dyne cm-2 occurs a t  x = 0.21. The inertial and viscous terms in (6 .4 )  yield 
corrections of less than 0.1 yo to the zeroth-order term in the contracted region 
of the ureter. It is noted that some uncertainty is associated with such estimates 
of the properties of the ureter. This arises particularly because, unlike the present 
model, the contracted ureter is convoluted and not precisely round. 
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FIGURE 1. Distribution of wall shear stress ~ ( z )  calculated from (6.4) for the wave shape 
s(z) given by (6.6) with A = 6.9, B = 0.014, S = 0.69 and n = 4;  p = 2.3 x 
corresponding to zero mean pressure gradient. 

7. Trapping 
In  a reference frame moving with the wave speed, the motion is'steady and so 

streamlines correspond to particle lines. It is seen from (3.2) that, provided that s2 
is less than about S P ,  the stream function @ decreases monotonically from zero 
to - 4p as r/s increases from zero to one. Thus, in this frame of reference, all the 
flow is in the negative axial direction. If 5 becomes large, however, 4 is positive 
near the axis and becomes negative only near the wall. There is then a bolus of 
fluid around the axis which is separated from the free-stream flow near the wall 
in the dilatedregions of the tube. This corresponds to the phenomenon of trapping 
which is described by Shapiro, Jaffrin & Weinberg (1969) for a sinusoidal wall 
profile. 

Trapping in the flow is identified by the existence of stagnation points on the 
axis r = 0. It can be shown from (3.2) that the axial velocity q&/r is zero on r = 0 
when 

Using (2.9) and (7.1), we see that there is no trapping when 

that is, a necessary condition for no trapping is that a: is less than t. This suggests 
that peristalsis is most efficacious when trapping does occur. Moreover, it was 

P = 8s2{(l - $ ~ ~ ( d s / d ~ ) ~  + O(c4)). (7.1) 

a: < I - + 0 ( € 4 ) ;  
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found in 3 6 that the shear stress on the wall of the tube is reduced by increasing 
the mean flux a. We note that for a > 1 - +skin the region oftrapped fluid extends 
along the whole axis, and there is a continuous stream of fluid moving in the 
positive axial direction near the axis. However, condition ( 4 . 5 ~ )  implies that this 
cannot occur in a peristaltic pump because it requires a favourable pressure 
gradient. 

8. Reflux 
A single definition of reflux is not universally accepted (see Boyarsky et al. 

1971, pp. 248-250). Physiologists associate reflux with a net mean flux in the 
negative axial direction, while Shapiro et al. (1969) refer to the more subtle 
phenomenon of a mean flux in the negative axial direction in a layer of fluid near 
the tube wall although the net mean flux over the whole cross-section is positive. 
The former definition corresponds simply to a being negative; that is p > 1. We 
see from (4.4) that, to O(l) ,  

p = ( y +  11)/12, where In = dx/sZn. (8.1) 1,' 
Thus large-scale reflux occurs when the normalized adverse pressure gradient y 
exceeds I2 - Il. For a given y ( > 0) and wave shape, this condition will be satisfied 
as the wave amplitude decreases. 

On the other hand, Shapiro et al. find that local reflux takes place in a sinu- 
soidally varying tube whenever there is an adverse pressure gradient (i.e. when 
y > 0). We now show that such reflux is induced by an adverse pressure gradient 
independently of the wave profile. Because streamlines correspond to particle 
path lines in the wave frame of reference, the mean volume flux corresponding to 
a given value of q5 is, from (2.5 b) ,  

that is, (8.2) 

Inverting (3.2) we find that near the wall of the tube 

(r/s)Z = { (p - $32) - [ (p - + s y  + 2$(p - S 2 ) p } / ( p  - 6-2) + O(e2). (8.3) 

By putting (8.3) into (8.2)) the mean flux L is given formally as a function of the 
stream function 9. 

A t  the wall r = s we have L( - gp) = CI, as required. Thus reflux occurs if the 
mean flux a short distance from the wall is greater than a;  that is, if for some 
A > O  

The left-hand side of (8.4) can be calculated by expanding L($) in a Taylor series 
about the point q5 = - &p. Thus, neglecting terms O(e2),  we find from (4.4), (8.2) 
and (8.3) that 

(8.5) L( -@+A) = a + 4yA2 - 16A3J: $ (p-s2)2+ 0(A4) .  
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Therefore, condition (8.4) is satisfied if and only if there is an adverse pressure 
gradient (i.e. y > 0).  The maximum value of L($)  is seen from (8.5) to occur 
when A = Am7 where 

A, = 7/61; (p- s2)2 + O(A2). (8.6) 

Hence (8.5) and (8.6) show that the mean reflux is 

It is seen from (8.1) and (8.7) that L, is proportional to y3 for smaIl adverse 
pressure gradients. As y+m7 L,, decreases as y-l; however, condition (4.6) is 
violated for large y and so there is large-scale reflux in this asymptotic state. The 
limiting adverse pressure gradient against which the pump can work occurs 
when there is no mean flux (a = 0) .  Thus the local reflux L,, just before large- 
scale reflux occurs is given from (2.9), (8.1) and (8.7) by 

L, = --( i, I2 - 11)3/(14 - 213 + 12)2. 

At this point, when y = I2 - 117 the magnitude of the reflux near the wall equals 
that of the forward flux near the axis of the tube. 
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